查看: 13331|回复: 0
打印 上一主题 下一主题
收起左侧

初中数学各类题型解题方法与技巧

[复制链接]
跳转到指定楼层
楼主
发表于 2019-10-17 10:19:51 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区

您需要 登录 才可以下载或查看,没有帐号?立即注册

x
1.数形结合思想

就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。

2.联系与转化的思想

事物之间是相互联系、相互制约的,是可以相互转化的。数学学科的各部分之间也是相互联系,可以相互转化的。

在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。

如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。

3.分类讨论的思想

在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查;这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。

4.待定系数法

当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。

5.配方法

就是把一个代数式设法构造成平方式,然后再进行所需要的变化。配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。

6.换元法

在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。

7.分析法

在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然;则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。这种思维过程通常称为“执果寻因”

8.综合法

在研究或证明命题时,如果推理的方向是从已知条件开始,逐步推导得到结论,这种思维过程通常称为“由因导果”

9.演绎法

由一般到特殊的推理方法。

10.归纳法

由一般到特殊的推理方法。

11.类比法

众多客观事物中,存在着一些相互之间有相似属性的事物,在两个或两类事物之间;根据它们的某些属性相同或相似,推出它们在其他属性方面也可能相同或相似的推理方法。类比法既可能是特殊到特殊,也可能一般到一般的推理。

函数、方程、不等式

常用的数学思想方法:

⑴数形结合的思想方法。

⑵待定系数法。

⑶配方法。

⑷联系与转化的思想。

⑸图像的平移变换。

证明角的相等

1.对顶角相等。

2.角(或同角)的补角相等或余角相等。

3.两直线平行,同位角相等、内错角相等。

4.凡直角都相等。

5.角平分线分得的两个角相等。

6.同一个三角形中,等边对等角。

7.等腰三角形中,底边上的高(或中线)平分顶角。

8.平行四边形的对角相等。

9.菱形的每一条对角线平分一组对角。

10.等腰梯形同一底上的两个角相等。

11.关系定理:同圆或等圆中,若有两条弧(或弦、或弦心距)相等,则它们所 对的圆心角相等。

12.圆内接四边形的任何一个外角都等于它的内对角。

13.同弧或等弧所对的圆周角相等。

14.弦切角等于它所夹的弧对的圆周角。

15.同圆或等圆中,如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。

16.全等三角形的对应角相等。

17.相似三角形的对应角相等。

18.利用等量代换。

19.利用代数或三角计算出角的度数相等

20.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,并且这一点和圆心的连线平分两条切线的夹角。

证明直线的平行或垂直

1.证明两条直线平行的主要依据和方法

⑴定义、在同一平面内不相交的两条直线平行。

⑵平行定理、两条直线都和第三条直线平行,这两条直线也互相平行。

⑶平行线的判定:同位角相等(内错角或同旁内角),两直线平行。

⑷平行四边形的对边平行。

⑸梯形的两底平行。

⑹三角形(或梯形)的中位线平行与第三边(或两底)

⑺一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,则这条直线平行于三角形的第三边。

2.证明两条直线垂直的主要依据和方法

⑴两条直线相交所成的四个角中,由一个是直角时,这两条直线互相垂直。

⑵直角三角形的两直角边互相垂直。

⑶三角形的两个锐角互余,则第三个内角为直角。

⑷三角形一边的中线等于这边的一半,则这个三角形为直角三角形。

⑸三角形一边的平方等于其他两边的平方和,则这边所对的内角为直角。

⑹三角形(或多边形)一边上的高垂直于这边。

⑺等腰三角形的顶角平分线(或底边上的中线)垂直于底边。

⑻矩形的两临边互相垂直。

⑼菱形的对角线互相垂直。

⑽平分弦(非直径)的直径垂直于这条弦,或平分弦所对的弧的直径垂直于这条弦。

⑾半圆或直径所对的圆周角是直角。

⑿圆的切线垂直于过切点的半径。

⒀相交两圆的连心线垂直于两圆的公共弦。

VV升学官方QQ群一览表 <
欢迎加入《VV升学帮家长论坛》官方QQ群
阶段 名称(点击名称加群) 群号 适合群体 状态
幼升小 2023幼升小家长群 532579610 幼儿园家长 欢迎加入
小学 小学三年级下家长群 667904972 小学三年级以下家长 欢迎加入
4-5年级家长群 725158805 4-5年级家长 欢迎加入
2023小升初1群 1061517160 2023年小升初家长 欢迎加入
成都绵阳小升初群 2021西川小升初1群 581048419 六年级意向西川家长 欢迎加入
2021西川小升初2群 478347254 六年级意向西川家长 欢迎加入
2021绵阳小升初群 461718055 六年级意向绵阳家长 欢迎加入
2021师大一中小升初1群 437430376 六年级意向师一家长 欢迎加入
2021师大一中小升初2群 791082618 六年级意向师一家长 欢迎加入
2021嘉祥小升初群 365045641 六年级意向嘉祥家长 欢迎加入
2021成实外小升初群 313140549 六年级意向成实外家长 欢迎加入
2021天府七中小升初群 465517943 六年级意向天七家长 欢迎加入
2021锦城一中小升初群 706052925 六年级意向锦一家长 欢迎加入
初中 2025年成都中考1群 1090848329 2025年中考家长 欢迎加入
2024成都中考1群 784534146 2024年中考家长 欢迎加入
2023成都中考1群 719590917 2023年中考家长 满员
2023成都中考2群 674290500 2023年中考家长 欢迎加入
2023成都中考3群 601472011 2023年中考家长 欢迎加入
高中 2025四川高考1群 641968933 2025年高考家长 欢迎加入
2025四川高考2群 746236783 2025年高考家长 欢迎加入
2025四川高考3群 497136258 2025年高考家长 欢迎加入
2024四川高考1群 377052703 2024年高考家长 欢迎加入
2024四川高考2群 154614478 2024年高考家长 欢迎加入
2024四川高考3群 731597247 2024年高考家长 欢迎加入
2023四川高考1群 365912428 2023年高考家长 欢迎加入
2023四川高考2群 937428632 2023年高考家长 欢迎加入
2022四川高考1群 173586328 2022年高考家长 欢迎加入
回复

使用道具 举报

使用 高级模式(可批量传图、插入视频等)
您需要登录后才可以回帖 登录 | 立即注册

快速回复 返回顶部 返回列表